Commentationes

Zur Wechselwirkung von π- und σ-Elektronen in der Theorie ungesättigter Moleküle

I. Semiempirische LCAO-SCF-Rechnungen für π - und σ -Orbitale von Acrolein und Furan

M. JUNGEN und H. LABHART

Physikalisch-Chemisches Institut der Universität Zürich

Eingegangen am 15. September 1967

With an extended Pariser-Parr-Pople (SCF-CI) method π - and σ -orbitals of acroleine and furan have been calculated as well as charge distributions and transition energies to some electronically excited states. The results are compared with experimental data and with calculations of other authors.

Mit einer erweiterten Pariser-Parr-Pople-(SCF–CI)-Methode wurden π - und σ -Orbitale von Acrolein und Furan sowie Ladungsverteilungen und Übergangsenergien zu einigen angeregten Elektronenzuständen berechnet. Die Ergebnisse werden mit experimentellen Daten und mit Rechnungen anderer Autoren verglichen.

Avec une méthode Pariser-Parr-Pople (SCF–IC) étendue ont été calculées les orbitales π et σ de l'acroléine et du furane ainsi que les distributions de charges et les énergies de transition vers quelques états électroniques excités. Les résultats sont comparés avec l'expérience et avec les calculs d'autres auteurs.

1. Einleitung

Die den meisten Näherungsverfahren zur Berechnung der Elektronenzustände ungesättigter Moleküle zugrunde liegende Separation von σ - und π -Molekülorbitalen ist nur solange sinnvoll, als man den Molekülrumpf als unpolarisiert voraussetzen darf. Sowohl in Molekülen mit Heteroatomen als auch beim Studium von σ - π ^{*}- oder π - σ ^{*}-Übergängen versagt die σ - π -Trennung, denn in beiden Fällen tritt eine Verschiebung der σ -Ladungen auf.

In einer früheren Arbeit [1] hatten wir deshalb versucht, mit einem erweiterten PPP-Verfahren die π - und σ -Orbitale von Formaldehyd im Grundzustand wie auch in elektronisch angeregten Zuständen, namentlich im $n-\pi^*$ -Zustand, zu ermitteln. Gleichzeitig veröffentlichten auch POPLE, SANTEY u. SEGAL [2,3] SCF-MO-Berechnungen der σ - und π -Orbitale — allerdings nur des Grundzustandes — von Formaldehyd und weiteren Kleinmolekülen. Seither sind eine Reihe ähnlicher Arbeiten publiziert worden (frühere Literatur findet sich in [1]). So liegt z. B. von ÖPIK u. THOMAS [4] eine PPP-Untersuchung der beiden aufeinander senkrecht stehenden π -Systeme im Stickstoffmolekül vor, während POLÁK u. PALDUS [5] eine LCAO-SCF-Berechnung des Äthylen durchführten und die σ - π -Separation diskutierten. POLÁK u. PALDUS fanden — in Übereinstimmung mit ORLOFF u. SINANOĞLU [6] — daß im Äthylen bei elektronischen Übergängen eine beträchtliche Verschiebung der o-Ladungen in den C-H-Bindungen stattfinden müsse; ÖPIK u. THOMAS erhielten bei semiempirischem Berücksichtigen differentieller Überlappungen gute Werte für die Übergangsenergien von N₂. BERTHIER u. Mitarb. haben u. a. Pyridin behandelt [7, 8]. Diese Autoren diskutieren überdies das überraschende Ergebnis, daß Rechnungen mit π - und σ -Orbitalen etwa zur selben Verteilung der Gesamtladung $(\pi + \sigma)$ führen wie die einfachen Hückel- und PPP-Verfahren, daß man jedoch oft eine völlig andere Verteilung der π -Ladungen erhält. Bei Pyridin z. B. wird in der C-N-Bindung und in einer C-C-Bindung verschiedene Polarität für die σ - und π -Ladungsverteilung vorausgesagt. ADAM u. GRIMISON [40] veröffentlichten unlängst Extended-Hückel-Rechnungen an 5-Ring-Heterozyklen, aus denen ähnliche Schlüsse gezogen werden. Die grobe Näherung läßt eine Überprüfung der Resultate mit Methoden, in welche die Elektronenwechselwirkung explizit eingeht, wünschenswert scheinen. Eine ab-initio-Rechnung über Formaldehyd von FOSTER u. Boxs [9] ergab sogar ein dem σ -Moment entgegengesetzt gerichtetes π -Dipolmoment.

Neben den UV-Spektren sind heute auch weitere im Rahmen der MO-Theorien interessante Größen dem Experiment zugänglich: FREEMAN et al. [10, 11] konnten mit Hilfe des Starkeffektes das Dipolmoment von Formaldehyd und Propinal im niedrigsten elektronisch angeregten Zustand bestimmen. Die Kenntnis der Kernquadrupol-Kopplungskonstante von Kernen mit nicht verschwindendem Quadrupolmoment erlaubt zudem Schlüsse über den Feldgradienten der Elektronenladungsverteilung und ermöglicht so eine Populationsanalyse für die Atomorbitale des betreffenden Kerns. Messungen der Kernquadrupol-Resonanzfrequenz führte LUCKEN [12, 13, 14] am N¹⁴-Kern von Pyridin und weiteren stickstoffhaltigen Aromaten durch, während FLYGARE u. LOWE [15] u. a. die Kernquadrupol-Kopplungskonstanten von O¹⁷ in Formaldehyd bestimmten. Auswertungen solcher Experimente — wobei man allerdings auf gewisse Modellvorstellungen nicht verzichten kann — sollen zur Prüfung der theoretischen Ergebnisse herangezogen werden.

Teil I der vorliegenden Arbeit bringt explizite SCF-PPP-Rechnungen mit π - und σ -Basisorbitalen zu kleinen Molekülen. In derselben Weise wie in [1] berechneten wir Grundzustand, Übergangsenergien zum $n-\pi^*$ -Zustand und zu höher angeregten Zuständen sowie die entsprechenden Ladungsverteilungen und Dipolmomente von Acrolein und Furan als Beispiele für ein ungesättigtes Kettenmolekül und ein Ringmolekül.

Die im einfachen, auf π -Orbitale beschränkten PPP-Verfahren getroffenen Vereinfachungen wie das Verwenden eines nicht orthogonalen Satzes von Ausgangsorbitalen und das Vernachlässigen von differentiellen Überlappungen (ZDO) haben wir in dieser Arbeit beibehalten. Die Vermeidung von Ungenauigkeiten, die von diesen z. T. recht fragwürdigen Annahmen herrühren, würde, wenn auch angeregte Zustände berechnet werden sollen, zu numerischen Rechnungen führen, die mit unseren derzeitigen Mitteln nicht zu bewältigen sind. Zudem sollen keine ab-initio-Rechnungen, sondern eine Verallgemeinerung des ursprünglichen PPP-Verfahrens auf Systeme mit σ -Elektronen angestrebt werden. (Die durch ZDO und Nichtorthogonalität der Basisorbitale bedingten Fehler sollen in Fortsetzung einer früheren Arbeit [1] näher untersucht werden.)

In Teil II zeigen wir Vereinfachungen der vollständigen Rechnung, welche sich

aus dem Studium der $\sigma-\pi$ -Wechselwirkungsterme ergeben. Dadurch soll es möglich werden, wenigstens für den Grundzustand zuverlässigere π -Orbitale abzuleiten als diejenigen, welche man mit vergleichbarem Rechenaufwand ohne Berücksichtigung der σ-Polarisierbarkeit erhält. Im Zusammenhang hiermit werden wir auch auf die von VEILLARD u. BERTHIER aufgeworfenen Fragen zur Aufteilung der Gesamtladung in einen π - und σ -Anteil eingehen.

2. Methoden

Berechnet man Molekülorbitale mit einem LCAO-Selbstkonsistenzverfahren, welches π - wie auch σ -Orbitale verwendet, so ist bei den einzelnen Schritten des Iterationsprozesses jedesmal eine Fockmatrix F zu diagonalisieren. Wir wollen in diesem Abschnitt unter Beibehaltung der Näherung des PPP-Verfahrens die expliziten Ausdrücke für die Matrixelemente von F herleiten, wie wir sie unseren Rechnungen zugrunde legten. Es zeigt sich, daß das Vernachlässigen aller differentiellen Überlappungen (CNDO, vgl. Ref. [2]) die einschneidendste Näherung der erweiterten PPP-Methode darstellt. Die hier auftretenden Probleme haben schon verschiedene Autoren studiert, eingehend neulich FISCHER-HJALMARS [16]. Diese Autorin und auch BERTHIER u. BAUDET [17] weisen darauf hin, daß erst das Verwenden von orthogonalisierten Löwdin-Ausgangsorbitalen [18] erlaubt, die differentiellen Überlappungen in der von PARISER u. PARR empirisch eingeführten Weise ohne Willkür zu vernachlässigen. (Aus technischen Gründen arbeiten wir dennoch mit nicht orthogonalisierten Atomorbitalen.)

Ein Matrixelement F_{rs} des Fockoperators zwischen zwei Ausgangsorbitalen χ_r und χ_s hat folgende Gestalt:

$$\begin{split} F_{rs} &= \langle \chi_r \mid H_{\text{Rumpf}} \mid \chi_s \rangle \\ &+ \sum_{i}^{\text{bes}} \left\{ 2 \left\langle \varphi_{\pi_i}(1) \, \chi_r(2) \left| \frac{e^2}{r_{12}} \right| \chi_s(2) \, \varphi_{\pi_i}(1) \right\rangle - \left\langle \varphi_{\pi_i}(1) \, \chi_r(2) \left| \frac{e^2}{r_{12}} \right| \varphi_{\pi_i}(2) \, \chi_s(1) \right\rangle \right\} \\ &+ \sum_{j}^{\text{bes}} \left\{ 2 \left\langle \varphi_{\sigma_j}(1) \, \chi_r(2) \left| \frac{e^2}{r_{12}} \right| \chi_s(2) \, \varphi_{\sigma_j}(1) \right\rangle - \left\langle \varphi_{\sigma_j}(1) \, \chi_r(2) \left| \frac{e^2}{r_{12}} \right| \varphi_{\sigma_j}(2) \, \chi_s(1) \right\rangle \right\}. \end{split}$$

Der Operator H_{Rumpf} enthalte die kinetische Energie wie auch alle Wechselwirkungen mit Kernladungen und mit Elektronen, die man nicht in den LCAO-MO-Ansatz miteinbezieht. Unter den Summen --- die erste Summe erstreckt sich über alle im Grundzustand besetzten π -Raumorbitale, die zweite über die σ -Orbitale steht die gesamte Coulombsche und Austauschwechselwirkung mit den Molekülorbitalen φ der vorhergehenden Iteration.

Es sei zur Abkürzung gesetzt

$$J_{rs}^{(II)} = \sum_{i}^{\text{bes}} \left\langle \varphi_{\pi_{i}}(1) \, \chi_{r}(2) \, \left| \frac{e^{2}}{r_{12}} \right| \chi_{s}(2) \, \varphi_{\pi_{i}}(1) \right\rangle; \quad K_{rs}^{(II)} = \sum_{i}^{\text{bes}} \left\langle \varphi_{\pi_{i}}(1) \, \chi_{r}(2) \, \left| \frac{e^{2}}{r_{12}} \right| \varphi_{\pi_{i}}(2) \, \chi_{s}(1) \right\rangle; \\ J_{rs}^{(\Sigma)} = \sum_{j}^{\text{bes}} \left\langle \varphi_{\sigma_{j}}(1) \, \chi_{r}(2) \, \left| \frac{e^{2}}{r_{12}} \right| \chi_{s}(2) \, \varphi_{\sigma_{j}}(1) \right\rangle; \quad K_{rs}^{(\Sigma)} = \sum_{j}^{\text{bes}} \left\langle \varphi_{\sigma_{j}}(1) \, \chi_{r}(2) \, \left| \frac{e^{2}}{r_{12}} \right| \varphi_{\sigma_{j}}(2) \, \chi_{s}(1) \right\rangle;$$
also

$$F_{rs} = H_{rs} + 2 \left(J_{rs}^{(\Sigma)} + J_{rs}^{(\Pi)} \right) - \left(K_{rs}^{(\Sigma)} + K_{rs}^{(\Pi)} \right)$$

Da aus Symmetriegründen alle F-Matrixelemente $F_{\pi\sigma}$ zwischen Orbitalen mit π - und σ -Charakter verschwinden, findet sich der Einfluß der σ -Ladungen auf die π -Orbitale nur in den Integralen $J^{(\Sigma)}$ und $K^{(\Sigma)}$ der Matrixelemente $F_{\pi\pi}$ und $F_{\pi\pi'}$ 24*

 $(\chi_{\pi} \text{ und } \chi_{\pi'} \text{ sollen Atomorbitale mit } \pi$ -Symmetrie, $\chi_{\sigma} \text{ und } \chi_{\sigma'} \text{ AOs mit } \sigma$ -Symmetrie bezeichnen).

Beim Vernachlässigen aller differentiellen Überlappungen läßt man die Wechselwirkungsintegrale $K_{n\pi}^{(\Sigma)}$, $J_{n\pi'}^{(I)}$, $J_{n\pi'}^{(\Sigma)}$, und $K_{n\pi'}^{(\Sigma)}$, außer acht, so daß in den *F*-Matrixelementen stehen bleibt

$$F_{\pi\pi} = H_{\pi\pi} + (2 J_{\pi\pi}^{(II)} - K_{\pi\pi}^{(II)}) + 2 J_{\pi\pi}^{(\Sigma)}$$

$$F_{\pi\pi'} = H_{\pi\pi'} - K_{\pi\pi'}^{(II)} \qquad (\pi \neq \pi') .$$
(I.1a)

Die Wechselwirkung mit den Elektronen des σ -Gerüstes tritt nur als Coulombsche Wechselwirkung in den Diagonalgliedern $F_{\pi\pi}$ der Fockmatrix auf.

Für die Elemente $F_{\sigma\sigma}$ und $F_{\sigma\sigma'}$ folgt analog

$$\begin{split} F_{\sigma\sigma} &= H_{\sigma\sigma} + (2 J_{\sigma\sigma}^{(\Sigma)} - K_{\sigma\sigma}^{(\Sigma)}) + 2 J_{\sigma\sigma}^{(II)} \qquad (\text{I.1b}) \\ F_{\sigma\sigma'} &= H_{\sigma\sigma'} - K_{\sigma\sigma'}^{(\Sigma)} \qquad (\sigma \neq \sigma') \;. \end{split}$$

Mit
$$q_r = 2 \sum_{i}^{\text{bes}} c_{ir}^2$$
, $p_{rs} = 2 \sum_{i}^{\text{bes}} c_{ir} c_{is}$ kann man beide Formelpaare durch
 $F_{rr} = H_{rr} + \sum_{\substack{\text{Orb. } l \\ \text{Frs} = H_{rs} - \frac{1}{2}} p_{rs} \gamma_{rs}} \qquad (I.2)$
 $F_{rs} = H_{rs} - \frac{1}{2} p_{rs} \gamma_{rs} \qquad (r \neq s)$

ersetzen.

POPLE u. Mitarb. [2] haben verschiedene Bedingungen für Invarianz der Lösungen von SCF-LCAO-MO-Rechnungen mit vollständigem Vernachlässigen der differentiellen Überlappungen (CNDO) bezüglich Koordinatentransformationen aufgezeigt, unter anderem: Das Integral $\gamma_{rs} = \langle \chi_r(1) \chi_s(2) \Big| \frac{e^2}{r_{12}} \Big| \chi_s(2) \chi_r(1) \rangle$ der elektrostatischen Wechselwirkung einer Ladung im Atomorbital χ_r auf Atom A mit einer Ladung im Orbital χ_s auf Atom B darf nur Funktion γ_{AB} der Atome A und B und ihres gegenseitigen Abstandes sein, unabhängig davon, ob man für χ_r und χ_s das s-Orbital oder eines der p-Orbitale wählt. Wir formen deshalb (I.2) um zu

$$F_{rr} = H_{rr} + \sum_{\text{At.L}} q_{\text{L}} \gamma_{\text{AL}} - \frac{1}{2} q_{r} \gamma_{\text{AA}}$$
(I.3)
$$F_{rs} = H_{rs} - \frac{1}{2} p_{rs} \gamma_{\text{AB}} \qquad (r \neq s) .$$

(Es bedeutet $q_{\rm L} = \sum_{l \ (L)} q_l$ die Summe der Orbitalladungen auf dem Atom L.) Erstetzt man ferner $H_{\pi\pi}$ durch den von PARISER u. PARE [19] angegebenen Ausdruck

$$H_{\pi\pi} = - I_{\pi} - \sum_{\mathbf{L} \neq \mathbf{A}} n_{\mathbf{L}}^{(II)} \gamma_{\mathbf{L}\mathbf{A}} - \sum_{\mathbf{L}} n_{\mathbf{L}}^{(\Sigma)} \gamma_{\mathbf{L}\mathbf{A}} = \alpha_{\pi} (\text{PPP}) - \sum_{\mathbf{L}} n_{\mathbf{L}}^{(\Sigma)} \gamma_{\mathbf{L}\mathbf{A}} ,$$

so erhält man für das Diagonale
lement des Fockoperators zwischen AOs mit π -Symmetrie

$$\begin{split} F_{\pi\pi} &= \alpha_{\pi} \left(\text{PPP} \right) + \sum_{\text{L}} q_{\text{L}}^{(II)} \gamma_{\text{LA}} - \frac{1}{2} q_{\text{L}}^{(II)} \gamma_{\text{AA}} + \sum_{\text{L}} \left(q_{\text{L}}^{(\Sigma)} - n_{\text{L}}^{(\Sigma)} \right) \gamma_{\text{LA}} = F_{\pi\pi}(\text{PPP}) \\ &+ \sum_{\text{L}} \left(q_{\text{L}}^{(\Sigma)} - n_{\text{L}}^{(\Sigma)} \right) \gamma_{\text{LA}}. \end{split}$$

(Die $n_{\rm L}$ sind die π - resp. σ -Ladungszahlen des Atoms L im unpolarisierten Zustand: $n_{\rm L}^{(\Sigma)} = \sum_{\sigma ({\rm L})} Z_{\sigma}, n_{\rm L}^{(II)} = Z_{\pi}$, wo die Z_i die Ladungszahlen des unpolarisierten Zustands im *i*-ten Atomorbital bedeuten. Unter dem unpolarisierten Zustand verstehen wir die Ladungsverteilung, die jedem AO der Valenzschale eine ganze Zahl von Elektronen zuteilt. Für ein H-Atom ist also $Z_{s_{\rm H}} = 1$, ein unpolarisiertes C-Atom trägt, außer den 1s-Elektronen, in jedem AO der L-Schale ein Elektron; die Zahl $n_{\rm L}^{(2)}$ beträgt beim C-Atom 3, bei einem ketonartig gebundenen O-Atom 5). Mit α_{π} (PPP) und $F_{\pi\pi}$ (PPP) bezeichnen wir hier die Größen α_{π} und $F_{\pi\pi}$ so wie sie in der PPP-Theorie — ohne Berücksichtigung der σ -Elektronen — auftreten.

POPLE u. SEGAL [2] gehen von F-Matrixelementen aus, welche sich von den hier hergeleiteten Formeln im analytischen Ausdruck nur wenig unterscheiden; VEILLARD u. BERTHIER [8] erhalten ein ähnliches Diagonalelement F_{rr} , benützen jedoch für F_{rs} die Wolfsberg-Helmholz-Formel [20].

Zu den Matrixelementen (I.3) müßten noch Korrekturglieder treten, wenn man nicht alle differentiellen Überlappungen vernachlässigte, sondern die NDDO-Näherung (Vernachlässigen der differentiellen Überlappungen nur von Orbitalen verschiedener Atome) verwendete. Am stärksten verändert würden in diesem Falle die Elemente $F_{\sigma\sigma'}$ zwischen zwei auf demselben Atom definierten σ -Orbitalen.

3. Berechnungen an Acrolein

Unsern LCAO-SCF-Berechnungen der σ - und π -Orbitale von Acrolein legten wir die in Fig. 1 dargestellte Molekülgeometrie zugrunde. Wir benützten einen Satz von 20 Basis-Atomorbitalen, nämlich je das 1s-AO der vier H-Atome und die vier AOs 2s, $2p_x$, $2p_y$ und $2p_z$ der O- und C-Atome; die Ladungszahlen Z des unpolarisierten Zustandes setzten wir überall = 1 außer im 2s- und $2p_x$ -Orbital des Sauerstoffatoms, wo wir Z = 2 annahmen.

Den Tabellen von Cooley u. SAHNI [21] konnten wir die Überlappungen S_{rs} zwischen den einzelnen Atomorbitalen entnehmen sowie Integrale $\gamma_{rs}^{o.s}$ der Elektronenabstoßung. Überlappungen zwischen nicht benachbarten Atomen wurden vernachlässigt. Für die γ_{rr} setzten wir nach der Vorschrift von PARISER [22] die Differenz von Ionisationspotential und Elektronenaffinität ein: $\gamma_{rr} = I_r - A_r$ (für die Zahlenwerte von Ionisationspotential und Elektronenaffinität benützten wir die Tabellen von SKINNER u. PRITCHARD [23]). Um die Inkonsistenz der theoretischen Werte $\gamma_{rs}^{o.s.}$ ($r \neq s$) gegenüber dem semiempirisch gewählten γ_{rr} zu vermeiden, korrigierten wir wie in [1] beschrieben für kurze Distanzen r-s die Inte grale $\gamma_{rs}^{o.s.}$ wegen der von Cooley u. SAHNI nicht berücksichtigten Elektronenkorrelationen und erhielten dadurch die verwendeten γ_{rs} . Die Parameter α_r

Fig. 1. Molekülgeometrie von Acrolein nach [31]; planares Molekül, alle Winkel betragen 120°

		φ_1	$arphi_2$	$arphi_3$	φ4	φ_5
1	$s_{\rm H_1}$	0,039530	0,218069	0,263003	-0,131948	0,422563
2	SH2	0,048700	0,221524	0,254887	-0,257306	-0,286872
3	SC1	0,149344	0,606158	$0,\!445543$	-0,194062	0,032444
4	p_{x,c_1}	-0,014381	0,003104	0,017720	0,118104	0,538253
5	p_{y,c_1}	0,000000	0,000000	0,000000	0,000000	0,000000
6	p_{z,C_1}	-0,052591	-0,113767	0,151804	-0,253621	0,135911
7	SC2	0,257201	0,551380	-0,342918	0,357843	-0,068140
8	p_{x,C_2}	-0,080670	0,023373	0,068412	0,256504	0,400308
9	p_{y,C_2}	0,000000	0,000000	0,000000	0,000000	0,000000
10	p_{z,C_2}	0,002125	0,132336	0,249904	0,006909	-0,104873
11	SH2	0,066852	0,196634	-0,196323	0,332715	0.234612
12	SC3	0,488288	0,048451	-0,435781	-0,406768	0,009350
13	p_{x,C_2}	0,026759	0,111536	-0,025770	0,252828	-0.329494
14	$p_{y,Cq}$	0,000000	0,000000	0,000000	0,000000	0.000000
15	$p_{z,Cq}$	-0,176010	0,156202	-0.232455	-0.105764	0.052884
16	SH4	0.140264	0.012850	-0.265189	-0.414941	0.252197
17	.	0,770043	-0.349846	0.315715	0.242498	0.031241
18	$\mathcal{D}_{x,0}$	0.004873	0.020796	-0.007893	0.076256	-0.147741
19	$\mathcal{D}_{v,0}$	0.000000	0.000000	0.000000	0.000000	0.000000
20	Dz.0	0.104266	-0.008510	0.077841	-0.135990	-0.033424
ε (e	\vec{V}	-36,438690	-33.669619	-28.917803	-25.340907	-21.552967
						,
		$arphi_{6}$	$arphi_{7}$	$arphi_7$	$arphi_{9}\ (\pi)$	$arphi_{ extsf{10}}$
1	<i>8</i> म1	-0.178338	0.316042	0.113876	0.000000	-0.112035
2	SH.	0.447813	0.040385	-0.133692	0,000000	0,055067
3	8C1	-0.032723	-0.058503	0.012603	0,000000	0.030376
4	p_{x,C_1}	-0.350746	0.156299	0.100598	0,000000	-0.037109
5	$\mathcal{D}_{\mathcal{V},C_1}$	0.000000	0.000000	0.000000	0.337923	0,000000
6	Dz.Co	0.324969	0.471871	-0.032232	0,000000	-0.095553
7	8Ca	0.013536	-0.026877	0.033639	0,000000	-0,111361
8	Dx.Co	0.258449	-0.144234	-0.262586	0,000000	0,266725
9	Dy.Co	0.000000	0,000000	0,000000	0,495231	0,000000
10	Dz.Co	-0.362131	-0,433612	-0.011367	0,000000	0,154192
11	SHo	0,388211	0,064406	-0,240519	0,000000	0,082641
12	SCa	-0.124885	0,129394	-0,045431	0,000000	-0,024176
13	Dx.Co	-0.167193	0.437401	0,113198	0,000000	-0,126256
14	Dy.Co	0,000000	0,000000	0,000000	0,548527	0,000000
15	Dz.Co	0.174979	-0.021886	0,467871	0,000000	-0,035278
16	8EA	0,096450	-0,278157	0,131556	0,000000	0,272826
17		0,137519	-0,055640	0,186236	0,000000	-0,002952
18	$p_{z,0}$	-0,115496	0,354378	0,162879	0,000000	0,874422
19	$p_{y,0}$	0,000000	0,000000	0,000000	0,582815	0,000000
20	$p_{z,0}$	-0,270951	0,140311	-0,719360	0,000000	0,044851
	· ·	40 04 7799	40 070040	46 990007	15 005552	-13 017890

Tabelle 1. LCAO-SCF-Orbitale und Orbitalenergien von Acrolein

setzten wir wie üblich zu $\alpha_r = -I_r - \sum_l Z_l \gamma_{lr}$ an; die Größen β_{rs} wählten wir als $\mu \cdot S_{rs}$ mit $\mu = -15$ eV. Wir haben somit alle Parameter nach denselben Überlegungen festgelegt wie in unseren früheren Rechnungen über Formaldehyd [1].

Zur Berechnung von angeregten Zuständen standen uns ein SCF-CI-Programm

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 ₁₀		φ_{11}	φ_{12}	φ ₁₃	φ_{14}	φ_{15}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(π)	<u>(π*)</u>	(<i>π</i> *)	·····	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8 _{H1}	0,000000	0,000000	0,000000	0,334661	-0,014888
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$s_{\rm H_2}$	0,000000	0,000000	0,000000	-0,337913	0,102159
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	sc1	0,000000	0,000000	0,000000	0,005661	0,047122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	p_{x,C_1}	0,000000	0,000000	0,000000	-0,406217	0,083765
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	p_{y,C_1}	-0,575192	-0,594370	-0,449096	0,000000	0,000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	p_{z,C_1}	0,000000	0,000000	0,000000	0,015224	-0,206518
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	SC ₂	0,000000	0,000000	0,000000	0,116152	0,146531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	p_{x,C_2}	0,000000	0,000000	0,000000	-0,496155	0,044877
$\begin{array}{cccccc} 10 & p_{x,c_2} & 0,00000 & 0,00000 & 0,00000 & -0,117532 & -0,378890 \\ 11 & s_{\mathrm{R}_3} & 0,000000 & 0,000000 & 0,000000 & 0,250068 & -0,359291 \\ 12 & s_{\mathrm{C}_3} & 0,000000 & 0,000000 & 0,000000 & -0,366676 & -0,129217 \\ 13 & p_{x,c_3} & 0,000000 & 0,000000 & 0,000000 & -0,366676 & -0,129217 \\ 14 & p_{y,c_3} & 0,185123 & 0,571868 & -0,581218 & 0,000000 & 0,000000 \\ 15 & p_{x,c_3} & 0,000000 & 0,000000 & 0,000000 & -0,148425 & 0,476924 \\ 16 & s_{\mathrm{R}_4} & 0,000000 & 0,000000 & 0,000000 & 0,027714 & 0,211012 \\ 18 & p_{x,0} & 0,000000 & 0,000000 & 0,000000 & 0,027714 & 0,211012 \\ 18 & p_{x,0} & 0,000000 & 0,000000 & 0,000000 & 0,010759 & 0,038170 \\ 19 & p_{y,0} & 0,602415 & -0,465863 & 0,283540 & 0,000000 & 0,000000 \\ 20 & p_{z,0} & 0,000000 & 0,000000 & 0,000000 & 0,080225 & 0,494031 \\ s (e\nabla) & -12,699698 & -0,80923 & +3,533564 & +3,735290 & -0,192768 \\ 2 & s_{\mathrm{R}_2} & 0,100405 & 0,551326 & -0,023647 & 0,28364 & 0,268303 \\ 3 & s_{\mathrm{C}_1} & 0,047167 & 0,396495 & 0,332913 & 0,329990 & -0,192768 \\ 2 & s_{\mathrm{R}_2} & 0,100405 & 0,551326 & -0,023647 & 0,286856 & 0,432263 \\ 5 & p_{\mathrm{V},\mathrm{C}_1} & 0,047548 & 0,466528 & -0,287036 & -0,280565 & 0,432263 \\ 5 & p_{\mathrm{V},\mathrm{C}_1} & 0,047548 & 0,466528 & -0,287036 & -0,286856 & 0,432263 \\ 5 & p_{\mathrm{V},\mathrm{C}_1} & 0,000000 & 0,000000 & 0,000000 & 0,000000 & 0,000000 \\ 7 & s_{\mathrm{C}_2} & -0,118613 & 0,153450 & -0,477162 & 0,218721 & -0,130385 \\ 8 & p_{x,\mathrm{C}_2} & -0,01037 & -0,08434 & 0,101740 & 0,220517 & -0,469119 \\ 9 & p_{\mathrm{V},\mathrm{C}_2} & -0,345475 & -0,018747 & 0,029240 & 0,445399 & -0,299351 \\ 11 & s_{\mathrm{R}_3} & -0,025917 & -0,075709 & 0,336389 & -0,141826 & 0,449161 \\ 12 & s_{\mathrm{C}_3} & -0,325017 & -0,075709 & 0,336389 & -0,141826 & 0,449161 \\ 12 & s_{\mathrm{C}_3} & -0,025917 & -0,075709 & 0,336389 & -0,141826 & 0,449161 \\ 12 & s_{\mathrm{C}_3} & -0,025917 & -0,075709 & 0,336389 & -0,141826 & 0,449161 \\ 12 & s_{\mathrm{R}_4} & -0,0539257 & 0,234062 & 0,018538 & -0,228449 & -0,173262 \\ 11 & s_{\mathrm{R}_4} & -0,539257 & 0,234062 & 0,018538 & -0,34274 & -0,145232 \\ 17 & s_0 & -0,094816 & -0,048805$	9	p_{u,C_2}	-0,521517	0,320412	0,616525	0,000000	0,000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	p_{z,C_9}	0,000000	0,000000	0,000000	-0,117532	-0,378890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	SH.	0,000000	0,000000	0,000000	0,250068	-0,359291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	8C2	0,000000	0,000000	0,000000	-0,306637	-0,326816
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Dr.Co	0,000000	0,000000	0,000000	-0.356676	-0.129217
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14	Dy.Co	0.185123	0.571868	-0.581218	0.000000	0.000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	Dz Co	0.000000	0.000000	0.000000	-0.148425	0.476924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	г*,03 Sн.	0.000000	0.000000	0.000000	0.098927	0.017631
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	80	0.000000	0.000000	0.000000	0.027714	0.211012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	200	0.000000	0.000000	0.000000	0.110759	0.038170
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	nu 0	0.602415	-0.465863	0.283540	0.000000	0.000000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	$p_{y,0}$	0.000000	0.000000	0.000000	0.080225	0.494031
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e (e	\overline{V}	-12,699698	-0.809923	+3533564	+3735290	+4 815034
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	- (-	.,					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_		φ_{16}	φ ₁₇	φ_{18}	φ_{19}	$arphi_{20}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8 _{H1}	0,047167	0,396495	0,332913	0,329990	-0,192768
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8 _{H2}	0,100405	0,551326	-0,023647	0,028364	0,268303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Sc.	0,094994	-0,467397	0,006699	-0,360971	-0,085971
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	p_{x,C_1}	0,047548	0,146528	-0,287036	-0,268056	0,432263
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	p_{y,C_1}	0,000000	0,000000	0,000000	0,000000	0,000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	Pz.C1	-0,393644	-0.300155	-0.434575	0.246633	0.049010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	SCo	-0.118613	0.153450	-0.477162	0.218721	-0.430385
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	p_{x,C_2}	-0.010037	-0.084834	0.101740	0.220517	-0.469119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	Dy.Co	0.000000	0.000000	0.000000	0.000000	0.000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	Pz.Co	-0.345475	-0.018747	0.029240	0.445399	0.299351
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1 ",-2 SHo	-0.025917	-0.075709	0.336389	-0.141826	0.449161
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12		0.325011	-0.134175	0.109821	0.175099	-0.039956
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	Dr Co	-0.459074	0.055324	0.354585	-0.228449	-0.173262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$\mathcal{D}_{\mathcal{U}_{n}}$ Ca	0.000000	0.000000	0.000000	0.000000	0.000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	p _{z.Co}	-0.088555	-0.290694	0.318355	0.315770	0.287172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	SH4	-0.539257	0.234062	0.018538	-0.344274	-0.145232
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	# 80	-0.094816	-0.048805	0.060697	0.044739	0.078315
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	$p_{x,0}$	0,125000	-0.014148	-0.089115	0.052071	0.039626
$20 \ p_{z,0} \ -0.218226 \ -0.095115 \ 0.119005 \ 0.081002 \ 0.151327 \ e (eV) \ +5.886421 \ +6.847355 \ +7.069353 \ \pm8.427760 \ \pm8.727760 \ \pm8.7277760 \ \pm8.7277760 \ \pm8.7277760 \ \pm8.7277760 \ \pm8.7277760 \ \pm8$	19	$\mathcal{D}_{\mathcal{H}}$	0.000000	0.000000	0.000000	0.000000	0.000000
ϵ (eV) +5.886421 +6.847355 \pm 7.060353 \pm 8.427760 \pm 8.700973	20	Dz.0	-0.218226	-0.095115	0.119005	0.081002	0,451327
	ε (e	\vec{V}	+5,886421	+6,847355	+7,069353	+8,127760	+8,780873

Tabelle 1 (Fortsetzung)

und ein SCF-OS-Programm zur Verfügung: das CI-Programm führt in angeregten Zuständen die Konfigurationswechselwirkung von maximal 49 gegenüber dem SCF-Grundzustand einfach angeregten Wellenfunktionen durch. Das OS-Programm andererseits berechnet mit Roothaans SCF-Methode für Systeme mit

Fig. 2. Acrolein: π - und σ -Ladungsverteilung in verschiedenen Zuständen (Einheiten [e]) und Dipolmomente. Die Pfeile geben die Richtung der Dipolmomentvektoren bezüglich der z-Achse (parallel zu C₁-C₂) an, nicht deren Länge

offenen Elektronenschalen [24] die SCF-Molekülorbitale des niedrigsten angeregten Triplettzustandes.

Tabelle 1 enthält die 20 LCAO-SCF-Orbitale φ_i des Grundzustandes (die ersten 11 MOs sind doppelt besetzt, die übrigen unbesetzt) sowie deren Orbitalenergien ε_i . $\varphi_9, \varphi_{11}, \varphi_{12}$ und φ_{13} sind π -Orbitale, φ_{10} ist das *n*-Orbital eines nichtbindenden Elektronenpaares beim O-Atom. In Fig. 2 sind alle π - und σ -Ladungen auf den einzelnen Atomen zusammengestellt für den Grundzustand, den $n-\pi^*$ -Zustand (berechnet nach der CI- und der OS-Methode) und für den niedrigsten $\pi-\pi^*$ -Zustand. Tabelle 2 enthält die Matrix der Ladungsdichten und der Bindungsordnungen im Grundzustand.

Den Vergleich von berechneten und experimentell bekannten Übergangsenergien und Dipolmomenten zeigt Tabelle 3. Die experimentellen Übergangsenergien entnahmen wir alle den Messungen von WALSH [25] aus dem Jahre 1945 und den 1963 publizierten Messungen von Hollas [26]. WALSH beobachtete bei 3300 Å (3.75 eV) eine Bande, welche er als $n-\pi^*$ -Übergang interpretierte, bei 1935 Å (6.39 eV) einen als π - π *- und bei 1750 Å (7.08 eV) einen als n- σ * aufgefaßten Übergang. Die Banden bei 1480 Å (8,37 eV) und 1460 Å (8,48 eV) könnten nach WALSH weiteren $\pi - \pi^*$ -Übergängen entsprechen. Hollas führte Messungen des Absorptionsspektrums von Acroleindampf durch. Die als $n-\pi^*$ -Übergang gedeutete Bande erstreckt sich von 25300 cm⁻¹ (3,14 eV) bis 31040 cm⁻¹ (3,89 eV). Der 0-0-Übergang befindet sich bei 25860 cm⁻¹ (3,21 eV); die Stelle stärkster Absorption bei 29800 cm⁻¹ (3,70 eV) entspricht der von WALSH angegebenen Bandenlage. Bei 24634 cm⁻¹ (3.05 eV) fand HOLLAS den 0-0-Übergang (gleichzeitig Stelle der stärksten Absorption) einer schwachen Bande, die er nur als Singulett-Triplett-Übergang in den niedrigsten $^{3}(\pi-\pi^{*})$ -Zustand erklären kann, falls sie überhaupt zum Acroleinspektrum gehört. Der Übergang ins Singulett des π - π *-Zustandes fand sich bei 2330 Å (5,32 eV). Das Dipolmoment von Acrolein im Grundzustand wurde von WAGNER et al. [27] aus dem Starkeffekt im Mikrowellenspektrum zu $3,11 \pm 0,04$ D ermittelt.

Die Resultate unserer Acroleinrechnung zeigen dasselbe Bild, wie wir es beim Formaldehyd fanden: der Grundzustand und der mit der SCF-OS-Methode berechnete $n-\pi^*$ -Zustand sind mit den experimentellen Werten verträglich. Wie beim Formaldehyd erhalten wir im Grundzustand ein etwas zu großes Dipolmoment (3,60 D statt 3,11 D). Der Vergleich mit Messungen an Propinal [11] läßt erwarten, daß das Dipolmoment von Acrolein bei der $n-\pi^*$ -Anregung um ein bis zwei D abnehmen, jedoch sein Vorzeichen nicht ändern wird. Mit der SCF-OS-Berechnung findet man in der Tat ein Dipolmoment von 1,24 D, wogegen die SCF-CI-Methode mit Konfigurationswechselwirkung von nur einfach angeregten Zuständen die σ-Ladungsreorganisation falsch beschreibt (vgl. Fig. 2). Wie wir im Anhang zu [1] zeigten, unterscheidet sich die SCF-OS-Methode von der SCF-CI-Methode dadurch, daß sie die Konfigurationswechselwirkung von gewissen. zum Grundzustand doppelt angeregten Konfigurationen enthält. Die Beimischung von doppelt angeregten Zuständen ist zur Berechnung des $n-\pi^*$ -Zustandes unerläßlich, denn wegen der Symmetrie des $n-\pi^*$ -Übergangs mischen nur wenige einfach angeregte Zustände bei, so daß zur Energieminimalisierung zuwenig geeignete Funktionen zur Verfügung stehen.

Im Gegensatz zur Formaldehydrechnung finden wir bei Acrolein mit SCF-OS eine um ca. $\frac{1}{2}$ eV zu niedrige Übergangsenergie für den $n-\pi^*$ -Übergang. Die mit der SCF-CI-Methode berechneten $\pi-\pi^*$ - und $n-\sigma^*$ -Übergangsenergien lassen sich z. T. gut mit den Werten von WALSH und von HOLLAS vergleichen, z. T. sind die Energien etwas zu hoch. Besonders gut stimmt der bei 8,37 eV beobachtete $\pi-\pi^*$ -Übergang mit dem bei 8,59 eV berechneten überein; falls unser $\pi-\pi^*$ -Übergang von 10,17 eV wirklich dem bei 8,48 eV beobachteten Übergang entspricht, so ist

	······································	1	2	3	4	5
		(<i>s</i> _{H1})	$(s_{\mathbb{H}_2})$	(sc1)	(p_{x,c_1})	$(p_{\mathcal{Y},C_1})$
1 2 3 4 5	$(s_{\rm H_1}) \ (s_{\rm H_2}) \ (s_{\rm C_1}) \ (p_{x,c_1}) \ (p_{y,c_1})$	0,942927	-0,116988 0,975975	0,559923 0,557425 1,265055	0,688385 -0,693088 0,009294 0,926289	0,000000 0,000000 0,000000 0,000000 0,890076
		6	7	8	9	10
		(p_{z,c_1})	(s_{C_2})	(p_{x,c_2})	(p_{y,c_2})	(p_{z,c_2})
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ \end{array} $		0,404288 0,401656 0,005799 0,012737 0,000000 0,919968	$\begin{array}{c} -0,060787\\ -0,061834\\ 0,292733\\ -0,007819\\ 0,000000\\ -0,454112\\ 1,269797\end{array}$	$\begin{array}{c} 0,007502\\ -0,004891\\ 0,001169\\ 0,197398\\ 0,000000\\ 0,000451\\ 0,004059\\ 0,930935 \end{array}$	$\begin{array}{c} 0,000000\\ 0,000000\\ 0,000000\\ 0,934644\\ 0,000000\\ 0,930000\\ 0,000000\\ 0,000000\\ 1,034466 \end{array}$	$\begin{array}{c} -\ 0,083173\\ -\ 0,096488\\ 0,457783\\ 0,003108\\ 0,000000\\ -\ 0,659787\\ -\ 0,026731\\ -\ 0,014261\\ 0,000000\\ 0,868156\end{array}$
		11 (8 _{Н3})	12 (s _{C3})	$\begin{array}{c} 13 \\ (p_{x,\mathtt{C_1}}) \end{array}$	$\begin{array}{c} 14 \\ (p_{y,c_3}) \end{array}$	15 (p_{z,c_3})
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $		$\begin{array}{c} -0,072799\\ 0,114030\\ -0,064486\\ 0,016773\\ 0,00000\\ 0,096435\\ 0,564482\\ 0,682549\\ 0,000000\\ -0,396476\\ 0,933909\end{array}$	$\begin{array}{c} 0,067159\\ -0,041074\\ -0,034832\\ 0,005503\\ 0,000000\\ 0,062677\\ 0,303080\\ -0,428247\\ 0,000000\\ -0,238677\\ -0,073278\\ 1,262462 \end{array}$	$\begin{array}{c} 0,082199\\ -0,060764\\ -0,044317\\ -0,009812\\ 0,00000\\ 0,067134\\ 0,387983\\ -0,476122\\ 0,000000\\ -0,210385\\ -0,077597\\ -0,001672\\ 0,868672 \end{array}$	0,000000 0,000000 0,000000 0,157757 0,000000 0,000000 0,000000 0,350205 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000	$\begin{array}{c} 0,042761\\ -0,016390\\ -0,025103\\ -0,003095\\ 0,000000\\ 0,050071\\ 0,203486\\ -0,175796\\ 0,000000\\ -0,217408\\ -20,01452\\ 0,042705\\ -0,013749\\ 0,000000\\ 0,749281 \end{array}$

Tabelle 2. Matrix der Ladungsdichten und Bindungsordnungen von Acrolein

hier die Abweichung von Rechnung und Experiment am größten. Die Singulett-Triplett-Aufspaltung des niedrigsten π - π *-Überganges haben wir zu 2,16 eV berechnet; der experimentelle Wert der Aufspaltung beträgt nach Hollas 2,27 eV. Der σ - σ *-Anteil am Singulett π - π *-Übergang beträgt in unserer Rechnung ca. 10% bei den ersten zwei Übergängen, beim höchsten π - π *-Übergang erhielten wir etwa 50%. Die Übergangsmomente der drei π - π *-Anregungen berechneten wir (nach steigender Übergangsenergie geordnet) zu log $\mu^2 = 0.96$, 0,60 und 0,38. Ein Vergleich mit den Messungen ist uns nicht möglich, weil WALSH die notwendigen Angaben nicht publiziert hat.

		16	47	19	40	20
		10	17	10	19	20
		(8 _{H4})	(80	$(p_{x,0})$	(<i>p</i> _y ,o)	(<i>p</i> _{z,0})
1	$(s_{\rm H_1})$	-0,041548	-0,004367	-0,033323	0,000000	-0,017328
2	$(s_{\rm H_2})$	0,011793	0,006780	0,029123	0,000000	0,021810
3	$(s_{\rm C_1})$	0,044704	-0,002858	0,003774	0,000000	-0,012017
4	(p_{x,C_1})	0,011736	0,001608	0,018349	0,000000	0,011957
5	(p_{y,C_1})	0,000000	0,000000	0,000000	-0,299116	0,000000
6	(p_{z,C_1})	-0,079604	0,005376	-0,004712	0,000000	0,021348
7	(s_{C_2})	-0,097489	-0,017017	-0,100409	0,000000	-0,068400
8	(p_{x,C_2})	0,137274	0,039774	0,138937	0,000000	0,096789
9	(p_{y,C_2})	0,000000	0,000000	0,000000	-0,051083	0,000000
10	(p_{z,C_2})	0,065336	0,008782	0,075901	0,000000	0,069160
11	$(s_{\rm H_3})$	-0,008980	0,026966	0,015498	0,000000	0,096137
12	(sc3)	0,590419	0,180716	0,012330	0,000000	0,446030
13	(p_{x,C_3})	-0,666662	-0,002818	0,305929	0,000000	0,000116
14	(p_{y,C_3})	0,000000	0,000000	0,000000	0,862421	0,000000
15	(p_{z,C_3})	0,342155	-0,350095	0,011481	0,000000	-0,755205
16	$(s_{\mathbf{H}_{4}})$	1,008717	-0,041036	0,168845	0,000000	-0,128811
17	(s_0)		1,863029	0,000028	0,000000	-0,309004
18	$(p_{x,0})$			1,916455	0,000000	-0,002838
19	$(p_{y,0})$				1,405154	0,000000
20	$(p_{2,0})$					1,298410

Tabelle 2 (Fortsetzung)

Theoretische Arbeiten über Acrolein sind von NAGAKURA [28] und von AIN-BINDER U. KRIVNOV [29] veröffentlicht worden. Es handelt sich in beiden Fällen um LCAO-SCF-Rechnungen mit Konfigurationswechselwirkung zur Behandlung der angeregten Zustände; die σ -Polarisierbarkeit wird nicht berücksichtigt. AINBINDER U. KRIVNOV haben zusätzlich auch die $n-\pi^*$ -Übergangsenergie abgeschätzt, geben jedoch die Ladungsverteilung im $n-\pi^*$ -Zustand nicht an. Wir vergleichen in Tabelle 4a die Übergangsenergien dieser Autoren mit dem Experiment und mit unseren Resultaten. Starke Abweichungen von unseren Ergebnissen oder vom Experiment finden sich nur beim $n-\pi^*$ -Übergang, wo sich die Abschätzung von AINBINDER U. KRIVNOV als zu grob erweist, und beim höchsten $\pi-\pi^*$ -Übergang, welcher in unserer Rechnung eine gegenüber dem Experiment und gegenüber dem Resultat der andern Autoren um ca. 2 eV zu hohe Übergangsenergie erhält.

AINBINDER u. KRIVNOV erhalten im Grundzustand eine ähnliche Ladungsverteilung wie wir, im π - π *-Zustand jedoch finden sie eine Ladungsverschiebung vom C₁- und C₂-Atom weg nach C₃ (die Ladungsdichte beim O-Atom nimmt leicht zu), im Gegensatz zu unserem Resultat, welches einen Ladungstransport vom Sauerstoff zum C₃ postuliert. Das Dipolmoment ändert sich demnach beim Übergang in den niedrigsten π - π *-Zustand nach der Rechnung von AINBINDER u. KRIVNOV im entgegengesetzten Sinn wie nach unserer Rechnung (vgl. Tabelle 4b). Derselbe Gegensatz zu unserm Resultat findet sich auch bei NAGAKURA und in einer Arbeit von PAYETTE u. SANDORFY [30]: In allen Fällen erscheint das Dipolmoment im π - π *-Zustand gegenüber dem Grundzustand erhöht und nicht erniedrigt wie bei uns. Da bisher das Dipolmoment von Acrolein im π - π *-Zustand nicht gemessen wurde, können wir nichts über die Gültigkeit der verschiedenen Resultate aussagen.

Übergang	SCF-CI	-Rechnung	SCF-O	S-Rechnung	Experiment	
	Sing.	Trip.	Sing.	Trip.	Sing.	Trip.
n- \pi*	3,71	eV		$2,68 \mathrm{~eV}$	$\left\{ \begin{array}{l} { m 3,21\ eV} \ [26] \\ { m 3,75} \ [25] \end{array} \right.$	
π - π^*	6,18	4,02			$\begin{bmatrix} 5,32 & [26] \\ 6.39 & [25] \end{bmatrix}$	3,05 [26]
	8,59	6,36			8,37 [25]	
	10,17	9,91			8,48 [25]	
σ–π*	6,6	39				
n-o*	7,71	7,68			7,08 [25]	
Dipolmoment	····					
Grundzust.		3,60 D		<u></u>		3,11 D [27]
$n-\pi^*$ -Zust.		0,98 D		1,24 D		

Tabelle 3. Übergangsenergien und Dipolmomente von Acrolein

Tabelle 4. Vergleich mit Resultaten anderer Autorena) Übergangsenergien (eV)

Übergang	⊿E (exp.) [25, 26]	$\varDelta E$ (theor.) [29]	ΔE (theor.) [28]	ΔE (unsere Rechnung)
 nπ*	3,21	5,15		2,68
$\pi - \pi^*$	5,32	6,98	6,23	6,18
π - π^*	8,37	7,96	8,10	8,59
π - π *	8,48	8,58	8,81	10,17

b) Verteilung der π -Ladung im Grundzustand und im π - π *-Zustand (Anzahl der Elektronen)

Ref.		Cı	C_2	C_3	0
[29]	Grundzustand π - π^* -Zustand	0,985 0,865	0,998 0,807	0,666 0,938	1,351 1,392
unsere Rechng.	Grundzustand $\pi - \pi^*$ -Zustand	0,890 0,913	1,034 0,942	0,670 0,973	1,405 1,172

Aus dem Vergleich von $\mathcal{P}_{G}^{\text{SCF}}$ und ${}^{3}\mathcal{P}_{n\pi^{*}}^{0.5}$ in Fig. 2 erhellt, daß durch $n-\pi^{*}$ -Anregung bei den Atomen C₁, C₂, C₃ und O resp. die π -Ladungsdichte sich um +0,17, +0,01, +0,36 und +0,47 Elektronenladungen ändert, so daß im $n-\pi^{*}$ -Zustand der Überschuß an π -Ladung auf den Atomen 0,06, 0,04, 0,03 und 0,88 Elektronen beträgt. Dem gegenüber steht ein Mangel von -0,02, -0,06, -0,27 und $-0,65 \sigma$ -Ladungen. Die Rechnung ergibt also für die überschüssige π -Elektronenladung eine Anhäufung beim O-Atom und einen abrupten Abfall zwischen O und C₃, während der Mangel an σ -Ladung von O bis C₁ stufenweise abnimmt.

Fig. 3. Molekülgeometrie von Furan nach [31]; planares Molekül

4. Berechnungen an Furan

Als Beispiel für LCAO-SCF-Berechnungen von π - und σ -Orbitalen eines aromatischen Heterozyklus diente das Furanmolekül. Fig. 3 zeigt die den Rechnungen zugrunde gelegte Molekülgeometrie [31]. Wir gingen aus von einem Satz von 24 Basis-Atomorbitalen in den Valenzschalen der verschiedenen Atome; alle Ladungszahlen Z des unpolarisierten Zustandes setzten wir = 1 außer im 2s- und $2p_y$ - $(2p_{\pi}$ -)Orbital des Sauerstoffatoms, wo wir Z = 2 setzten.

Die Parameter α_r und β_{rs} bestimmten wir in derselben Weise wie bei den Rechnungen über Acrolein (Abschnitt 3) und Formaldehyd [1]. Einzig die Werte γ_{rs} wurden leicht abgeändert festgelegt: Nach der Vorschrift von Pople u. SEGAL [3] (vgl. Abschnitt 2) wählten wir für γ_{AB} zwischen den Atomen A und B (A \neq B) den Wert $\gamma_{s_A s_B}$ (bei H-Atomen ist das 1s-, sonst das 2s-Orbital zu verwenden). Diese $\gamma_{s_A s_B}$ sind Größen, welche wir nach dem in [1] erläuterten Vorgehen aus den $\gamma_{s_A s_B}^{cs.}$ der Tabellen von COOLEY u. SAHNI [21] unter Berücksichtigung der Korrelationskorrektur ableiteten. Für γ_{AA} verwendeten wir entsprechend dem in der PPP-Methode üblichen Ansatz die Differenz von Ionisationspotential und Elektronenaffinität im s-Orbital: $\gamma_{s_A s_A} = I_{s_A} - A_{s_A}$. In Tabelle 5 sind die in der Furanrechnung benützten γ -Werte zusammengestellt.

Ein System von 24 Ausgangsorbitalen ist zu groß für unser SCF-OS-Programm. Wir haben deshalb nur mit dem SCF-CI-Programm (vgl. Abschnitt 3) den Grundzustand und einige einfach angeregte Zustände von Furan berechnet. Tabelle 6 enthält die 24 LCAO-SCF-Orbitale φ_i des Grundzustandes (die ersten 13 MOs

Tabelle 5. y-Parameter der Furanrechnung (eV)

$\gamma c_1 c_1$	-	$12,20 \mathrm{~eV}$										
$\gamma c_{1} \mathbf{H}_{1}$	==	$9,20 \mathrm{eV}$	$\gamma_{\rm H_1H_1} = 1$	$12,80 \mathrm{eV}$								
yc1c2	=	$7,90 \mathrm{eV}$	$\gamma_{\rm H_1C_2} =$	$5,70 \mathrm{~eV}$	$\gamma c_2 c_2$		$12,20 \mathrm{eV}$					
$\gamma c_{1} \mathbf{H}_{2}$	=	$5,90~{ m eV}$	$\gamma_{\rm H_1H_2} =$	$5,20 \mathrm{~eV}$	$\gamma_{C_2H_2}$	=	$9,20 \mathrm{~eV}$	$\gamma_{\rm H_2H_2}$		12,80 eV		
$\gamma c_1 c_3$		$5,80 \mathrm{eV}$	γ _{E1} c ₃ =	$4,30 \mathrm{eV}$	YC2C3	=	$7,60 \mathrm{eV}$	$\gamma_{\rm H_2C_3}$		$5,70 \mathrm{~eV}$		
$\gamma_{c_1H_3}$		$4,30 \mathrm{eV}$	$\gamma_{\rm H_1H_3} =$	$3,30 \mathrm{eV}$	$\gamma c_2 H_3$	=	$5,70 \mathrm{~eV}$	$\gamma_{\rm H_2H_3}$	-	$5,20 \mathrm{~eV}$		
γc ₁ c ₄		$5,90 \mathrm{eV}$	γ _{H1} c ₄ ==	4,50 eV	$\gamma c_2 c_4$		$5,80 \mathrm{eV}$	$\gamma_{\rm H_2C_4}$	=	$4,30 \mathrm{eV}$		
γс 1 н4		$4,50 \mathrm{eV}$	$\gamma_{\rm H_1H_4} =$	$3,50 \mathrm{eV}$	$\gamma_{C_2H_4}$	=	4,30 eV	$\gamma_{\rm H_2H_4}$		3,30 eV		
γc100		8,10 eV	$\gamma_{\rm H_1O_0} =$	$6,20 \mathrm{eV}$	YC200		$5,80 \mathrm{eV}$	γ _{H9O0}		4,30 eV	$\gamma_{00} = 2$	15,40 eV

		φ_1	φ_2	φ_3	$arphi_4$	φ_5
1	8c1	0,342784	-0,139427	0,501712	0,404481	0,254394
2	p_{x,c_1}	0,131091	0,038742	-0,042878	-0.218598	-0.069727
3	p_{y,c_1}	0,000000	0,000000	0.000000	0.000000	0.000000
4	p_{z,C_1}	0,043277	0,190686	-0.072724	0.017657	0.229885
5	S _{H1}	0,089349	-0,038097	0.234981	0.358454	0.265876
6	SC2	0,228378	-0,535509	0,346437	-0.189628	-0.349285
7	p_{x,c_2}	0,043254	-0,072554	-0.146577	-0.148615	0.165893
8	p_{y,c_2}	0,000000	0,000000	0.000000	0.000000	0.000000
9	p_{z,C_2}	0,075295	-0.017288	0.089287	0.200963	0.125404
10	$s_{\rm H_2}$	0,051512	-0.201289	0.166905	-0.150729	-0.341317
11	802	0,228378	-0.535509	-0.346437	-0.189628	0.349285
12	p_{x,C_2}	-0.043254	0.072554	-0.146577	0.148615	0.165893
13	p_{y,C_2}	0,000000	0,000000	0.000000	0.000000	0.000000
14	$p_{z,Co}$	0.075295	-0.017288	0.089287	0.200963	-0.125404
15	SH2	0,051512	-0.201289	-0.166905	-0.150729	0.341317
16	SCA	0.342784	-0.139427	~0.501712	0 404481	-0.254394
17	p_{x,C_4}	-0.131091	-0.038742	0.042878	0.218598	-0.069727
18	Dy CA	0.000000	0.000000	0.000000	0,000000	0,000121
19	Dz Ca	0.043277	0.190686	0.072724	0.017657	-0.229885
20	г», 04 8н.	0.089349	-0.038097	-0 234981	0 358454	-0.265876
21	80	0.762193	0 463426	-0.000000	-0.960877	-0,200010
22	Dr n	-0.000000	-0.000000	-0.131218	0,200077	-0,000000
23	D_{u}	0.000000	0,000000	0,000000	0,000000	0,000000
24	10,0 10,0	-0.072643	0.045055	-0.000000	-0.066946	_0.000000
ε (e	$\vec{\mathbf{V}}$	-38,262364	-33 320454	-31,000000	- 95 955067	-94 994351
~ (•	• /	00,402001	00,020101	01,101002	-20,000001	-21,021001
		$arphi_6$	φ_7	φ_8 (π)	φ ₉	φ ₁₀
 1		φ_6 0,035252	φ_7 -0.132708	φ_8 (π) 0,000000	φ_9 -0.058669	φ ₁₀ 0.002610
 1 2	s_{c_1}	φ_6 0,035252 0,262592	φ_7 -0,132708 -0,360262	φ_{8} (π) 0,000000 0,000000	φ_9 -0,058669 -0.142307	φ_{10} 0,002610 -0.272692
1 2 3	$\frac{s_{c_1}}{p_{x,c_1}}$	φ_6 0,035252 0,262592 0,000000	φ_7 -0,132708 -0,360262 0,000000	φ_8 (π) 0,000000 0,000000 0,388656	φ_9 -0,058669 -0,142307 0,000000	φ ₁₀ 0,002610 -0,272692 0,000000
1 2 3 4	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1}	φ_6 0,035252 0,262592 0,00000 -0,165050	φ_7 -0,132708 -0,360262 0,000000 0,254980	φ_8 (π) 0,000000 0,000000 0,388656 0,000000	φ_{9} -0,058669 -0,142307 0,000000 0.208331	φ_{10} 0,002610 -0,272692 0,000000 -0,311008
$\frac{1}{2}$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1}	φ_6 0,035252 0,262592 0,000000 -0,165050 -0,205129	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051	φ_8 (π) 0,000000 0,000000 0,388656 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879	<i>φ</i> ₁₀ 0,002610 -0,272692 0,000000 -0,311008 0,130083
1 2 3 4 5 6	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2}	φ_6 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0.061045	φ_8 (π) 0,000000 0,000000 0,388656 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573
1234567	s_{C_1} p_{x,C_1} p_{y,C_1} p_{z,C_1} s_{H_1} s_{C_2} p_{x,C_2}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823	$arphi_8(\pi)$ 0,000000 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592
1 2 3 4 5 6 7 8	s_{C_1} p_{x,C_1} p_{y,C_1} p_{z,C_1} s_{H_1} s_{C_2} p_{x,C_2} p_{y,C_2}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,00000	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,00000	φ_8 (π) 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,349497	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000
1 2 3 4 5 6 7 8 9	sc_1 p_{x,c_1} p_{y,c_1} p_{z,c_1} sc_2 p_{x,c_2} p_{y,c_2} p_{z,c_2}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0 167790
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	sc_1 p_{x,c_1} p_{y,c_1} p_{z,c_1} sc_1 sc_2 p_{x,c_2} p_{y,c_2} p_{z,c_2} sc_2 sc_2	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,000000 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,00000 0,167790 -0,196968
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array} $	sc_1 p_{x,c_1} p_{z,c_1} s_{H_1} sc_2 p_{x,c_2} p_{x,c_2} p_{z,c_2} s_{H_2} sc_3	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array} $	$s_{c_1} \\ p_{x,c_1} \\ p_{y,c_1} \\ p_{z,c_1} \\ s_{H_1} \\ s_{C_2} \\ p_{x,C_2} \\ p_{x,C_2} \\ p_{y,C_2} \\ p_{z,C_2} \\ s_{H_2} \\ s_{C_3} \\ p_{x,C_3}$	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \end{array} $	s_{c_1} p_{x,c_1} p_{z,c_1} s_{H_1} s_{c_2} p_{x,c_2} p_{x,c_2} p_{z,c_2} s_{H_2} s_{c_3} p_{x,c_3} p_{y,c_4}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,00000 0,00000 0,0000000 0,0000000 0,0000000 0,0000000 0,0000000 0,000000	$arphi_8(\pi)$ 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,349497 0,000000 0,000000 0,000000 0,000000 0,349497	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array} $	s_{c_1} p_{x,c_1} p_{z,c_1} s_{H_1} s_{c_2} p_{x,c_2} p_{x,c_2} p_{z,c_2} s_{H_2} s_{c_3} p_{y,c_3} p_{z,c_3}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,349497 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2} p_{x,C_2} p_{x,C_2} p_{z,C_2} s_{H_2} s_{C_3} p_{y,C_3} p_{z,C_3} s_{H_3}	φ_8 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,167790 0,196968
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2} p_{x,C_2} p_{y,C_2} p_{z,C_2} s_{H_2} s_{C_3} p_{x,C_3} p_{y,C_3} p_{z,C_3} s_{H_3} s_{C_4}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252	$arphi_7$ -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,349497 \\ 0,000000 \\ 0,349497 \\ 0,0000000 \\ 0,0000000 \\ 0,0000000 \\ 0,000000 \\ 0,0000000 \\ 0,0000$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,207112 -0,058669	φ_{10} 0,002610 -0,272692 0,000000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 101 \\ 12 \\ 3 \\ 4 \\ 15 \\ 6 \\ 17 \\ 17 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2} p_{x,c_2} p_{y,c_2} p_{z,c_2} s_{H_2} s_{C_3} p_{x,c_3} p_{x,c_3} p_{x,c_3} s_{H_3} s_{C_4} p_{x,c_4}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252 -0,262592	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,00000 \\ 0,00000 \\ 0,000000 \\ 0$	φ_9 -0,058669 -0,142307 0,00000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 101 \\ 12 \\ 13 \\ 14 \\ 5 \\ 16 \\ 17 \\ 18 \end{array}$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2} p_{x,c_2} p_{y,c_2} p_{z,c_2} s_{H_2} s_{C_3} p_{x,c_3} p_{y,c_3} p_{z,c_3} s_{H_3} s_{C_4} p_{y,c_4}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252 -0,262592 0,000000	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000	$arphi_8$ (π) 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,00000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{array}$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{c_2} p_{x,c_2} p_{x,c_2} p_{z,c_2} s_{c_3} p_{x,c_3} p_{x,c_3} p_{x,c_3} p_{x,c_3} p_{x,c_3} p_{x,c_3} p_{x,c_4} p_{z,c_4} p_{z,c_4}	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252 -0,262592 0,000000 -0,165050	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,254980	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \end{array}$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000 0,208331	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,341008
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 0 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array}$	$\begin{array}{c} s_{\rm C_1} \\ p_{x,{\rm C_1}} \\ p_{y,{\rm C_1}} \\ p_{z,{\rm C_2}} \\ s_{\rm H_1} \\ s_{\rm C_2} \\ p_{x,{\rm C_2}} \\ p_{y,{\rm C_2}} \\ p_{z,{\rm C_2}} \\ s_{\rm H_2} \\ s_{\rm C_3} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ p_{z,{\rm C_4}} \\ p_{z,{\rm C_4}} \\ p_{z,{\rm C_4}} \\ s_{\rm H_4} \end{array}$	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252 -0,262592 0,000000 -0,165050 -0,205129	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,254980 -0,312051	$arphi_8$ (π) 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000 0,208331 0,213879	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,311008 -0,139083
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 21 \end{array}$	$\begin{array}{c} s_{\rm C_1} \\ p_{x,{\rm C_1}} \\ p_{y,{\rm C_1}} \\ s_{\rm H_1} \\ s_{\rm C_2} \\ p_{x,{\rm C_2}} \\ p_{y,{\rm C_2}} \\ p_{z,{\rm C_2}} \\ s_{\rm H_2} \\ s_{\rm C_3} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ p_{z,{\rm C_4}} \\ s_{\rm H_4} \\ s_{\rm O} \end{array}$	φ_{6} 0,035252 0,262592 0,000000 -0,165050 -0,205129 -0,015444 0,242567 0,000000 0,371660 -0,344904 -0,015444 -0,242567 0,000000 0,371660 -0,344904 0,035252 -0,262592 0,000000 -0,165050 -0,205129 -0,125995	φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,312051 0,000000	φ_8 (π) 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000 0,208331 0,213879 -0,005329	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,311008 -0,139083 -0,00000
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 9 \\ 20 \\ 22 \\ 22 \end{array}$	$\begin{array}{c} s_{\rm C_1} \\ p_{x,{\rm C_1}} \\ p_{y,{\rm C_1}} \\ s_{\rm H_1} \\ s_{\rm C_2} \\ p_{x,{\rm C_2}} \\ p_{x,{\rm C_2}} \\ p_{z,{\rm C_2}} \\ s_{\rm H_2} \\ s_{\rm C_3} \\ p_{x,{\rm C_3}} \\ s_{\rm H_3} \\ s_{\rm C_4} \\ p_{x,{\rm C_4}} \\ p_{y,{\rm C_4}} \\ p_{y,{\rm C_4}} \\ s_{\rm H_4} \\ s_{\rm O} \\ p_{x,{\rm O}} \end{array}$		φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,254980 -0,312051 0,000000 0,111886	φ_8 (π) 0,000000 0,388656 0,000000 0,388656 0,000000 0,000000 0,000000 0,000000 0,000000	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,05869 0,142307 0,000000 0,208331 0,213879 -0,005329 0,000000	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,311008 -0,139083 -0,000000 0,603093
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} s_{\rm C_1} \\ p_{x,{\rm C_1}} \\ p_{y,{\rm C_1}} \\ s_{\rm H_1} \\ s_{\rm C_2} \\ p_{x,{\rm C_2}} \\ p_{x,{\rm C_2}} \\ p_{z,{\rm C_2}} \\ s_{\rm H_2} \\ s_{\rm C_3} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_3}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ p_{x,{\rm C_4}} \\ s_{\rm H_4} \\ s_{\rm O} \\ p_{x,{\rm O}} \\ p_{y,{\rm O}} \end{array}$		φ_7 -0,132708 -0,360262 0,000000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,254980 -0,312051 0,000000 0,111886 0,000000	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000 0,208331 0,213879 -0,005329 0,000000 0,000000	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,311008 -0,139083 -0,000000 0,693093 0,000000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	s_{c_1} p_{x,c_1} p_{y,c_1} p_{z,c_1} s_{H_1} s_{C_2} p_{x,c_2} p_{y,c_2} p_{z,c_2} s_{H_3} s_{C_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_4} p_{x,c_5} s_{H_4} s_{C_4} p_{x,c_5} s_{H_4} s_{C_5} p_{x,c_5} s_{H_5} s_{C_4} p_{x,c_5} p_{x,c_5} s_{H_5} s_{C_4} p_{x,c_5} p_{x,c_5} s_{H_5} s_{C_4} p_{x,c_5} p_{x,c_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_5} s_{H_5} s_{C_6} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5} s_{H_5} s_{C_6} p_{x,c_5}		φ_7 -0,132708 -0,360262 0,00000 0,254980 0,312051 -0,061045 -0,078823 0,000000 -0,329468 0,255854 0,061045 -0,078823 0,000000 0,329468 -0,255854 0,132708 -0,360262 0,000000 -0,254980 -0,312051 0,000000 0,111886 0,000000 0,000000	$\begin{array}{c} \varphi_8 \\ (\pi) \\ \hline \\ 0,000000 \\ 0,000000 \\ 0,388656 \\ 0,000000 \\$	φ_9 -0,058669 -0,142307 0,000000 0,208331 0,213879 0,088120 0,511870 0,000000 -0,071719 -0,207112 0,088120 -0,511870 0,000000 -0,071719 -0,207112 -0,058669 0,142307 0,000000 0,208331 0,213879 -0,005329 0,000000 0,000000 0,372374	φ_{10} 0,002610 -0,272692 0,00000 -0,311008 0,139083 -0,030573 -0,038592 0,000000 0,167790 -0,196968 0,030573 -0,038592 0,000000 -0,167790 0,196968 -0,002610 -0,272692 0,000000 0,311008 -0,139083 -0,000000 0,693093 0,000000 -0,000000

Tabelle 6. LCAO-SCF-Orbitale und Orbitalenergien von Furan

1 s_{c1} 2 p_{x,c_1} $\hat{3} p_{y,c_1}$ 4 pz,c1 5 s_{H1} $6 s_{C_2}$ $\overline{7}$ p_{x,c_2} 8 p_{y,C_2} 9 p_{z,C_2} $10 \ s_{H_2}$ $11 \ s_{C_3}$ 12 p_{x,C3} 13 p_{y,c_3} 14 p_{z,c_3} $15 \ s_{\rm H_3}$ $16 \ s_{C_4}$ 17 p_{x,c_4} 18 p_{y,c_4} 19 p_{z,c_4} 20 s_{H4} 21 so 22 $p_{x,0}$ 23 $p_{y,0}$ 24 pz,0 ε (eV)

Tabelle 6 (Fortsetzung)									
φ_{11}	φ_{12} (π)	$arphi_{13} \ (\pi)$	φ_{14}	$arphi_{15}\ (\pi^*)$					
-0,043763	0,000000	0,000000	0,124677	0,000000					
-0,130817	0,000000	0,000000	0,377451	0,000000					
0,000000	-0,121966	-0,584828	0,000000	-0,577988					
-0,265516	0,000000	0,000000	0,169975	0,000000					
-0,105371	0,000000	0,000000	0,120232	0,000000					
0,054233	0,000000	0,000000	0,008368	0,000000					
-0,163886	0,000000	0,000000	0,327005	0,000000					
0,000000	-0,510306	-0,397462	0,000000	0,342696					
0,262674	0,000000	0,000000	-0,076782	0,000000					
-0,071681	0,000000	0,000000	0,160269	0,000000					
0,054233	0,000000	0,000000	-0,008368	0,000000					
0,163886	0,000000	0,000000	0,327005	0,000000					
0,000000	-0,510306	0,397462	0,000000	0,342696					
0,262674	0,000000	0,000000	0,076782	0,000000					
-0,071681	0,000000	0,000000	-0,160269	0,000000					
-0,043763	0,000000	0,000000	-0,124677	0,000000					
0,130817	0,000000	0,000000	0,377451	0,000000					
0,000000	-0,121966	0,584828	0,000000	-0,577988					
-0,265516	0,000000	0,000000	-0,169975	0,000000					
-0,105371	0,000000	0,000000	-0,120232	0,000000					
0,154869	0,000000	0,000000	0,000000	0,000000					
-0,000000	0,000000	0,000000	0,565783	0,000000					
0,000000	0,670391	0,000000	0,000000	0,311414					
0,752918	0,000000	0,000000	-0,000000	0,000000					
-14,855088	-12,862785	-11,223187	$+2,\!238049$	+2,329763					

		$arphi_{16}$	$arphi_{16} \ (\pi^*)$	φ_{18}	φ_{19}	$arphi_{20}$
1	SC1	0,204132	0,000000	-0,369738	-0,307900	0,014713
2	p_{x,c_1}	0,306121	0,000000	-0,007933	0,088824	0,308493
3	p_{y,C_1}	0,000000	-0,397462	0,000000	0,000000	0,000000
4	p_{z,C_1}	0,371316	0,000000	0,126266	-0,146392	-0,394887
5	 8 _{Н1}	-0,148380	0,000000	0,296227	0,382230	0,298127
6	SC2	-0,094605	0,000000	0,055289	0,321193	-0,242732
7	p_{x,c_2}	0,024074	0,000000	-0,016789	0,243073	0,181 434
8	p_{y,c_2}	0,000000	0,584828	0,000000	0,000000	0,000000
9	p_{z,c_2}	$0,\!153924$	0,000000	$0,\!434280$	-0,030685	-0,110997
10	$s_{\rm H_2}$	0,255792	0,000000	0,222738	-0,188390	0,211247
11	SC3	-0,094605	0,000000	0,055289	-0,321193	-0,242732
12	p_{x,C_3}	-0,024074	0,000000	0,016789	0,243073	-0,181434
13	p_{y,c_3}	0,000000	-0,584828	0,000000	0,000000	0,000000
14	p_{z,C_3}	$0,\!153924$	0,000000	0,434280	0,030685	-0,110997
15	SH3	0,255792	0,000000	0,222738	0,188390	0,211247
16	SC4	0,204131	0,000000	-0,369738	0,307900	0,014713
17	p_{x,c_4}	-0,306121	0,000000	0,007932	0,088824	-0,308493
18	p_{y,c_4}	0,000000	0,397462	0,000000	0,000000	0,000000
19	p_{z,C_4}	0,371316	0,000000	0,126266	0,146392	-0,394888
20	$s_{\mathrm{H_4}}$	-0,148380	0,000000	0,296227	-0,382229	0,298127
21	80	-0,271878	0,000000	0,088374	0,000000	-0,012059
22	$p_{x,0}$	0,000000	0,000000	0,000000	-0,249384	0,000000
23	$p_{y,0}$	0,000000	0,000000	0,000000	0,000000	0,000000
24	$p_{z,\mathrm{o}}$	0,371799	0,000000	-0,167828	-0,000000	0,147947
ε (e	V)	+3,499084	+5,123045	+5,601900	+6,432151	+7,750088

_		$arphi_{21}$	$arphi_{22}$	$arphi_{23}$	$arphi_{24}$	·····
1	8 _{C1}	-0,022667	0,223006	0,119423	-0,073199	
2	p_{x,C_1}	-0,010693	-0,222643	-0,371846	-0,298508	
3	p_{y,C_1}	0,000000	0,000000	0,000000	0,000000	
4	p_{z,C_1}	0,418583	-0,135346	-0,102749	0,190450	
5	8 _{H1}	-0,121065	-0,247262	-0,253976	-0,144996	
6	SC2	0,341844	0,105419	-0,207953	0,148710	
7	p_{x,c_2}	-0,193750	0,342129	0,298814	0,350263	
8	p_{y,c_2}	0,000000	0,000000	0,000000	0,000000	
9	p_{z,C_2}	-0,024229	-0,411353	0,129467	0,403688	
10	$s_{\rm H_2}$	-0,356711	-0,152011	0,327797	0,199652	
11	SC3	-0,341844	-0,105419	-0,207953	-0,148710	
12	p_{x,c_3}	$-0,\!193750$	0,342129	-0,298814	0,350263	
13	p_{y,c_3}	0,000000	0,000000	0,000000	0,000000	
14	p_{z,c_3}	0,024230	0,411353	0,129467	-0,403688	
15	SH3	0,356711	0,152011	0,327797	-0,199652	
16	SC4	0,022667	-0,223006	0,119423	0,073198	
17	p_{x,C_4}	-0,010693	-0,222643	0,371846	-0,298508	
18	$p_{y,C_{4}}$	0,000000	0,000000	0,000000	0,000000	
19	p_{z,C_4}	-0,418583	0,135346	-0,102749	-0,190450	
20	SH4	0,121064	0,247262	-0,253976	0,144996	
21	80	0,000000	-0,000000	0,098509	0,000000	
22	$p_{x,0}$	0,233570	-0,038936	-0,000000	-0,035083	
23	$p_{y,0}$	0,000000	0,000000	0,000000	0,000000	
24	$p_{z,0}$	-0,000000	0,000000	-0,147028	-0,000000	
ε (e	V)	+8,139606	+8,726398	+9,130528	+10,832979	

Tabelle 6 (Fortsetzung)

sind doppelt besetzt, die übrigen unbesetzt) sowie deren Orbitalenergien ε_i . φ_8 , φ_{12} , φ_{13} , φ_{15} und φ_{17} sind π -Orbitale, φ_{11} ist das *n*-Orbital eines nichtbindenden Elektronenpaares beim O-Atom. Tabelle 7 enthält die Matrix der Ladungsdichten und Bindungsordnungen im Grundzustand. Fig. 4 zeigt die π - und σ -Ladungsverteilung sowie deren Anteil am totalen Dipolmoment. Das Sauerstoffatom hat 0,2 π -Elektronen in den Ring abgegeben; wegen der Verschiebung von 0,5 σ -Elektronenladungen zum O-Atom hin wird das totale Dipolmoment dennoch durch den Elektronenüberschuß bei O bestimmt. Experimentell wurde von SIRVETZ [32] als

Fig. 4. Furan: π - und σ -Ladungsverteilung (in Einheiten [e]) und -Dipolmomente

Dipol
moment aus dem Mikrowellen-Starkeffekt $0,661\pm0,006$ D bestimmt; die Polarität ist unbekannt.

Unsere SCF-CI-Rechnung ergab die folgenden optischen Singulett-Singulett-Übergänge und Übergangsenergien: Bei 5,58 eV (222 mµ), 6,33 eV (196 mµ) und 6,87 eV (180 mµ) berechneten wir je einen (in unserer Näherung verbotenen) π - σ^* -Übergang; diese entsprechen in der Numerierung von Tabelle 6 den Übergängen 13 \rightarrow 14, 12 \rightarrow 14 und 13 \rightarrow 16 resp. Bei 6,89 eV (179 mµ) sollte der erste π - π^* -Übergang mit einem Übergangsmoment log $\mu^2 = -0,18$ zu finden sein. Als B_2 -Übergang wäre er quer zur Molekülachse polarisiert. (Der nächste, parallel zur Molekülachse polarisierte π - π^* -(A_1 -)Übergang erscheint nach unserer Rechnung erst bei 8,07 eV (154 mµ) mit einem Übergangsmoment log $\mu^2 = +0,21$, der erste n- π^* -Übergang bei 9,01 eV (138 mµ)]. Die π - σ^* -Zustände haben in unserer Näherung keine Singulett-Triplett-Aufspaltung; den niedrigsten $^{3}(\pi$ - π^*)-Übergang berechneten wir bei ca. 5,1 eV (240 mµ). Überraschenderweise haben also die niedrigsten angeregten Singulett-Zustände nicht π - π^* - sondern π - σ^* -Charakter; ohne Berücksichtigung der σ -Orbitale könnten wir das Furanspektrum in der Gegend von 200 mµ mit unseren Parametern demnach nicht erklären.

Vergleichen wir diese Resultate mit den Messungen von WATANABE u. NA-KAYAMA [33] an Furandampf und mit Angaben über das Spektrum von in Cyclohexan gelöstem Furan [34]. WATANABE u. NAKAYAMA fanden wie vorher schon PICKETT [35] und PRICE u. WALSH [36] vier sehr diffuse Maxima bei 1953 Å, 1996 Å, 2045 Å und 2110 Å mit Absorptionskoeffizienten von ca. 140 cm⁻¹ (bei Drucken von 0,02 bis 2 mm Hg). Man könnte diese Banden als Glieder einer Vibrationsserie mit $\Delta v \sim 1200 \text{ cm}^{-1}$ auffassen. Das Lösungsspektrum zeigt ein Maximum bei 207 m μ ($\varepsilon \sim 10^4$) sowie je eine Schulter bei 222 m μ ($\varepsilon \sim 2.10^3$) und bei 286 mµ ($\varepsilon \sim 3 \cdot 10^{-3}$). Bei dieser letzten Schulter könnte es sich um einen Singulett-Triplett-Übergang handeln. Auf der kurzwelligen Seite der erwähnten diffusen Übergänge erscheint ein System von scharfen, starken Banden (Absorptionskoeffizient $\sim 1000 \text{ cm}^{-1}$ im selben Druckgebiet). PICKETT interpretierte deren stärkste als 0–0-Bande eines Rydbergüberganges und die übrigen Banden in diesem Gebiet als Übergänge zu vibratorisch angeregten Gliedern desselben Elektronenzustandes. WATANABE u. NAKAYAMA bestätigen die Zuordnungen von Picketts Analyse der Vibrationsstruktur, sind jedoch nicht sicher, ob es sich um einen Rydbergübergang handelt. Bei noch kürzeren Wellenlängen findet man ausgedehnte Rydbergserien und ein Gebiet von hauptsächlich kontinuierlicher Absorption, welche eine Zuordnung verunmöglicht.

In den letzten Jahren sind verschiedene MO-Rechnungen über Furan publiziert worden, sie behandeln allerdings alle nur das π -System. ORLOFF u. FITTS [37] verwendeten den Formalismus der Dichtematrizen mit semiempirischer Parameterwahl. Sie erhielten als π -Ladungsdichte beim O-Atom 1,516, bei C₁ 1,146 und bei C₂ 1,096 Elektronenladungen. Als π - π *-Übergangsenergien fanden sie mittels Konfigurationswechselwirkung 6,4 eV, 6,9 eV, 7,3 eV und 7,8 eV. HARTMANN u. JUG [38] behandelten Pyrrol und Furan mit einer Einzentrenentwicklung, ohne zwischen den beiden Molekülen zu unterscheiden. Nach ihrer Rechnung beträgt die π -Ladungsdichte beim Heteroatom 1,307, bei C₁ 1,243 und bei C₂ 1,103 Elektronenladungen. Als π - π *-Übergänge geben sie je einen B₂-Übergang bei 6,85 eV und 8,70 eV sowie A₁-Übergänge bei 7,91 eV und 8,15 eV an. Mit der "théorie

		1 (s _{C1})	$2 (p_{x,c_1})$	$\begin{array}{c} 3 \\ (p_{y,c_1}) \end{array}$	$4 \ (p_{z,c_1})$	5 (s _{н1})
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $	(s_{C_1}) (p_{x,C_1}) (p_{y,C_1}) (p_{z,C_1}) (s_{H_1})	1,282391	-0,035413 0,767279	0,000000 0,000000 1,015907	-0,047372 -0,098028 0,000000 0,799129	0,620482 -0,635198 0,000000 0,379333 0,958951
		$egin{array}{c} 6 \ (s_{\mathrm{C_2}}) \end{array}$	$7 \ (p_{x,c_2})$	$8 \atop (p_{y,c_2})$	$9 \ (p_{z,\mathrm{G}_2})$	10 (s _{H₂)}
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $		$\begin{array}{c} 0,322274\\ 0,133566\\ 0,000000\\ -0,401235\\ -0,091255\\ 1,265020\end{array}$	$\begin{array}{c} -0,140909\\ 0,162555\\ 0,000000\\ 0,272459\\ 0,020093\\ 0,013306\\ 0,867276\end{array}$	0,000000 0,000000 0,861042 0,000000 0,000000 0,000000 0,000000 1,081072	$\begin{array}{c} 0,472360\\ 0,198153\\ 0,000000\\ -0,512748\\ -0,129970\\ -0,014711\\ 0,024497\\ 0,000000\\ 0,838055\end{array}$	$\begin{array}{c} -0,099349\\ -0,083271\\ 0,00000\\ 0,059781\\ -0,013673\\ 0,597538\\ -0,464698\\ 0,00000\\ -0,600678\\ 0,962989\end{array}$
		11 (s _{C3})	$\begin{array}{c} 12 \\ (p_{x,\mathrm{C}_{3}}) \end{array}$	$\begin{array}{c} 13 \\ (p_{y,c_3}) \end{array}$	$rac{14}{(p_{z, ext{c}_3})}$	15 (<i>s</i> _{Н3})
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $		$\begin{array}{c} -0,049633\\ -0,025751\\ 0,00000\\ 0,044950\\ 0,047792\\ 0,278300\\ 0,424234\\ 0,000000\\ -0,023163\\ -0,072231\\ 1,265020\end{array}$	$\begin{array}{c} 0,056999\\ -0,028001\\ 0,000000\\ -0,109660\\ -0,101294\\ -0,424234\\ -0,640445\\ 0,000000\\ 0,084346\\ 0,090088\\ -0,013306\\ 0,867276\end{array}$	$\begin{array}{c} 0,000000\\ 0,000000\\ -0,068746\\ 0,000000\\ 0,000000\\ 0,000000\\ 0,000000\\ 0,449167\\ 0,000000\\ 0,000000\\ 0,000000\\ 0,000000\\ 1,081072 \end{array}$	$\begin{array}{c} -0,011077\\ -0,043316\\ 0,000000\\ -0,057323\\ -0,029364\\ -0,023163\\ -0,084346\\ 0,000000\\ 0,196452\\ -0,019698\\ -0,014711\\ -0,024497\\ 0,000000\\ 0,838055\end{array}$	$\begin{array}{c} 0,050887\\ 0,004012\\ 0,000000\\ -0,083798\\ -0,017338\\ -0,072231\\ -0,090088\\ 0,000000\\ -0,019698\\ -0,031461\\ 0,597538\\ 0,464698\\ 0,000000\\ -0,600678\\ 0,962989\end{array}$

Tabelle 7. Matrix der Ladungsdichten und Bindungsordnungen von Furan

LCAO améliorée" berechneten PUJOL u. JULG [39] fünf π -Orbitale des Furan-Grundzustandes. Diese Orbitale zeigen mit steigender Orbitalenergie dieselbe Sequenz in der Symmetrie wie die unsrigen. Als Ladungsdichte fanden diese Autoren unter Berücksichtigung einer Deformation der σ -Orbitale in den C–O-Bindungen 1,924 π -Elektronen beim O-Atom, bei C₁ 0,991 und bei C₂ 1,047 Elektronen; hieraus berechnet sich das π -Dipolmoment zu 0,886 D. PUJOL u. JULG haben dieses Moment mit dem entgegengesetzt gerichteten atomaren Dipolmoment des freien Elektronenpaares beim Sauerstoff (1,632 D) zu einem totalen Dipolmoment von -0,764 D kombiniert. Wir glauben jedoch, daß das Bild der von C₁

		16	17	18	19	20			
		(s_{C_4})	(p_{x,c_4})	(p_{y,c_4})	(p_{z,c_4})	(SII4)			
1	(s_{C_1})	-0,053807	0,066803	0,000000	0,003247	0,042556			
2	(p_{x,C_1})	-0,066803	0,076121	0,000000	-0,018184	0,080646			
3	(p_{y,c_1})	0,000000	0,000000	-0,352189	0,000000	0,000000			
4	(p_{z,C_1})	0,003247	0,018184	0,000000	-0,080377	0,057960			
5	$(s_{\rm H_1})$	0,042556	-0,080646	0,000000	0,057960	0,011553			
6	(s_{C_2})	-0,049633	0,025751	0,000000	0,044950	0,047792			
7	(p_{x,C_2})	-0,056999	-0,028001	0,000000	0,109660	0,101294			
8	(p_{y,C_2})	0,000000	0,000000	-0,068746	0,000000	0,000000			
9	(p_{z,C_2})	0,011077	0,043316	0,000000	-0,057323	-0,029364			
10	(SH2)	0,050887	-0,004012	0,000000	-0,083798	-0,017338			
11	(s_{C_3})	0,322274	-0,133566	0,000000	-0,401235	-0,091255			
12	(p_{x,C_3})	0,140909	0,162555	0,000000	-0,272459	-0,020093			
13	(p_{y,C_3})	0,000000	0,000000	0,861042	0,000000	0,000000			
14	(p_{z,C_3})	0,472360	-0,198153	0,000000	-0,512748	-0,129970			
15	(S _{H3})	-0,099349	0,083271	0,000000	0,059781	-0,013673			
16	(SCA)	1,282391	0,035413	0,000000	-0,047372	0,620482			
17	(p_{x,C_A})		0,767279	0,000000	0,098028	0,635198			
18	(p_{y,C_A})			1,015907	0,000000	0,000000			
19	(p_{z,C_A})			,	0,799129	0,379333			
20	$(s_{\mathbf{H}_4})$					0,958951			
		21	22						
		(80)	$(p_r o)$	$(p_{\pi} \alpha)$	$(n_{\tau}, 0)$				
			(F2,0)	(F9,0)	(F2,0)				
1	(s_{C_1})	$0,\!153175$	-0,271833	0,000000	-0,245133				
2	(p_{x,c_1})	0,248558	-0,416096	0,000000	$-0,\!430918$				
3	(p_{y,c_1})	0,000000	0,000000	0,359987	0,000000				
4	(p_{z,c_1})	0,190307	$-0,\!458067$	0,000000	-0,147098				
5	$(s_{\mathbf{H_1}})$	-0,075812	0,081719	0,000000	0,046869				
6	(s_{C_2})	-0,026098	0,009686	0,000000	0,099579				
7	(p_{x,C_2})	-0,038438	-0,107064	0,000000	0,010646				
8	(p_{y,c_2})	0,000000	0,000000	-0,213440	0,000000				
9	(p_{z,c_2})	-0,021246	0,079190	0,000000	0,102225				
10	(s _{н2})	0,040233	-0,106512	0,000000	-0,081560				
11	(s_{C_3})	-0,026098	-0,009686	0,000000	0,099579				
12	(p_{x,c_3})	0,038438	-0,107064	0,000000	-0,010646				
13	(p_{y,c_3})	0,000000	0,000000	-0,213440	0,000000				
14	(p_{z,C_3})	-0,021246	-0,079190	0,000000	0,102225				
15	$(s_{\mathbf{H}_{3}})$	0,040233	0,106512	0,000000	-0,081560				
16	(s_{C_4})	0,153175	0,271833	0,000000	-0,245133				
17	(p_{x,c_4})	-0,248558	-0,416096	0,000000	$0,\!430918$				
18	(p_{ν,c_4})	0,000000	0,000000	0,359987	0,000000				
19	$(p_{z,\mathrm{C_4}})$	0,190307	0,458067	0,000000	-0,147098				
20	$(s_{\mathbf{H_4}})$	-0,075812	-0,081719	0,000000	0,046869				
21	(s_0)	1,816846	-0,000000	0,000000	0,264367				
22	$(p_{x,0})$		1,120790	0,000000	0,000000				
23	$(p_{y,o})$			1,806043	0,000000				
24	$(p_{z,0})$				1.580187				

Tabelle 7 (Fortsetzung)

resp. C₄ nach O verschobenen σ -Ladungen den physikalischen Sachverhalt besser beschreibt. Bei 5,80 eV ergab die Rechnung von PUJOL u. JULG einen quer polarisierten, bei 7,24 eV und 7,47 eV je einen längs polarisierten π - π *-Übergang.

5. Diskussion der Resultate

Die in den vorhergehenden Abschnitten mitgeteilten Molekülberechnungen gehen aus von einem Satz semiempirisch zu wählender Parameter, welche wir weitgehend nach den Erfahrungen beim Berechnen der π -Wellenfunktionen von Systemen mit unpolarisierbarem σ -Rumpf bestimmt hatten. Die Tatsache, daß der verwendete Parametersatz sich auch in Rechnungen mit π - und σ -Orbitalen bewährt, läßt vermuten, daß er nicht nur mathematisch brauchbar, sondern auch physikalisch sinnvoll ist. Freilich benützen andere Autoren [3, 8] Parameter, die von den unsrigen oft erheblich abweichen. Eine Wahl von α_r und β_{rs} in der Art von POPLE u. SEGAL [3] führt bei Acrolein zu den Übergangsenergien 9,46 eV, 9,60 eV, 10,08 eV, 13,56 eV und 13,78 eV statt unserer Werte 3,71 eV, 6,18 eV, 6,69 eV, 7,71 eV und 8,59 eV resp. (vgl. Tabelle 5); als Dipolmoment des Formaldehyd-Grundzustandes fanden POPLE u. SEGAL 1,27 D, unsere Rechnung [1] ergab 2.64 D (Meßwert: 2.32 D); bei Acrolein findet man mit den Popleschen β -Werten im Grundzustand ein Moment von 1.34 D, mit den unsrigen 3,60 D, gemessen wurde 3,11 D. Diese Diskrepanz liegt in der Wahl der β -Parameter begründet POPLE u. SEGAL setzten $\beta_{rs} = S_{rs} \beta_{AB}^0$, wobei in einer C–O-Bindung $\beta_{CO}^0 = -26 \text{ eV}$, in einer C-C-Bindung $\beta_{CC}^0 = -21 \text{ eV}$ beträgt, sie wählten also im Vergleich zu andern Energiegrößen die β_{rs} (dem Betrage nach) beinahe doppelt so groß wie wir. Je höhere Werte man aber für die β -Parameter setzt, desto größer wird die Aufspaltung der Orbitalenergien und damit die Übergangsenergien und um so weniger stark sind die Bindungen polarisiert. Mittels ab-initio-Berechnungen von α - und β -Integralen ließ sich möglicherweise entscheiden, welche Werte vom theoretischen Standpunkt aus vorzuziehen sind.

Es zeigte sich im Laufe der Arbeit, daß es bei einem Ringmolekül wie Furan wesentlich schwieriger ist, Konvergenz der LCAO–SCF-Rechnung zu erhalten als beispielsweise bei Formaldehyd oder Acrolein; bei weiteren Berechnungen von Ringmolekülen wird die Wahl der Parameter deshalb äußerst sorgfältig festzulegen sein. Von Bedeutung ist hierbei unsere Korrektur der γ_{rs} wegen der Elektronenkorrelationen: Ohne diese Korrektur divergieren die Rechnungen.

Zusammenfassend stellen wir fest, daß sich die LCAO-SCF-Methoden eignen zum Berechnen von π -Wellenfunktionen unter Einschluß der σ -Valenzfunktionen, obwohl unser Verfahren einige Mängel aufweist wie z. B. das Verwenden von nicht orthogonalen Ausgangsorbitalen und damit zusammenhängend eine gewisse Willkür in der Parameterwahl. Man muß freilich, wie schon erwähnt, die $n-\pi^*$ -Zustände mit der SCF-OS-Methode berechnen, muß also die Konfigurationswechselwirkung mit zum Grundzustand doppelt angeregten Zuständen berücksichtigen.

Wohl der größte Nachteil unseres Vorgehens besteht im großen Arbeitsaufwand: Rechnungen über ein Molekül wie Acrolein dauern selbst auf einem schnellen Computer über 1 Std. In Teil II dieser Arbeit wollen wir deshalb versuchen, wenigstens für den Grundzustand einfachere Rechenmethoden zu finden.

Wir danken der Ciba AG Basel für die finanzielle Unterstützung dieser Arbeit sowie für die zur Verfügung gestellte Rechenzeit. Herrn Assistenz-Prof. G. WAGNIÈRE, Zürich, danken wir dafür, daß wir die von ihm zusammen mit Herrn F. VEILLON (Ciba AG) entwickelten Fortran-Programme benützen durften.

Literatur

- 1. JUNGEN, M., H. LABHART und G. WAGNIÈRE: Theoret. chim. Acta (Berl.) 4, 305 (1966).
- 2. POPLE, J. A., D. P. SANTRY, and G. A. SEGAL: J. chem. Physics 43, S. 129 (1965).
- 3. -, and G. A. SEGAL: J. chem. Physics 43, S. 136; 44, 3289 (1965-66).
- 4. ÖPIK, U., and T. H. THOMAS: Mol. Physics 10, 289 (1965).
- 5. POLÁK, R., u. J. PALDUS: Theoret. chim. Acta (Berl.) 5, 422 (1966).
- 6. ORLOFF, M. K., and O. SINANOĞLU: J. chem. Physics 43, 49 (1965).
- 7. BERTHIER, G., H. LEMAIRE, A. RASSAT und A. VEILLARD: Theoret. chim. Acta (Berl.) 3, 213 (1965).
- 8. VEILLARD, A., u. G. BERTHIER: Theoret. chim. Acta (Berl.) 4, 347 (1966).
- 9. FOSTER, J. M., and S. F. Boys: Rev. mod. Physics 32, 303 (1960).
- 10. FREEMAN, D. E., and W. KLEMPERER: J. chem. Physics 45, 52 (1966).
- 11. -, J. R. LOMBARDI, and W. KLEMPERER: J. chem. Physics 45, 58 (1966).
- 12. LUCKEN, E. A. C.: Trans. Faraday Soc. 57, 729 (1961).
- 13. Tetrahedron 19, (Suppl. 2) 123 (1963).
- 14. GUIBÉ, L., and E. A. C. LUCKEN: Mol. Physics 10, 237 (1966).
- 15. FLYGARE, W. H., and J. T. LOWE: J. chem. Physics 43, 3645 (1965).
- 16. FISCHER-HJALMARS, I.: J. chem. Physics 42, 1962 (1965).
- 17. BERTHIER, G., et J. BAUDET: J. Chim. physique 1964, 1598.
- 18. LÖWDIN, P. O.: J. chem. Physics 18, 365 (1950).
- 19. PARISER, R., and R. G. PARR: J. chem. Physics 21, 466 (1953).
- 20. WOLFSBERG, M., and L. HELMHOLZ: J. chem. Physics 20, 837 (1952).
- 21. COOLEY, J. W., and R. C. SAHNI: NASA-TN-D 146 (1958).
- 22. PARISER, R.: J. chem. Physics 21, 568 (1953).
- 23. SKINNER, H. A., and H. O. PRITCHAED: Trans. Faraday Soc. 49, 1254 (1953).
- 24. ROOTHAAN, C. C. J.: Rev. mod. Physics 32, 179 (1960).
- 25. WALSH, A. D.: Trans. Faraday Soc. 41, 498 (1945).
- 26. HOLLAS, J. M.: Spectrochim. Acta 19, 1425 (1963).
- WAGNER, R., J. FINE, J. W. SIMMONS, and J. H. GOLDSTEIN: J. chem. Physics 26, 634 (1957).
- 28. NAGAKURA, S.: Mol. Physics 3, 105 (1960).
- 29. AINBINDER, B. YU., i V. YA. KRIVNOV: Teor. i Eksperim. Khim. 1, 707 (1965).
- 30. PAYETTE, G., and C. SANDORFY: J. chem. Physics 30, 168 (1959).
- SUTTON, L. E.: Tables of interatomic distances and configuration in molecules and ions. London: The Chemical Society 1958.
- 32. SIRVETZ, M. H.: J. chem. Physics 19, 1609 (1951).
- 33. WATANABE, K., and T. NAKAYAMA: J. chem. Physics 29, 48 (1958).
- 34. UV-Atlas organischer Verbindungen, Vol. II. Weinheim: Verlag Chemie 1966.
- 35. PICKETT, L. W.: J. chem. Physics 8, 293 (1940).
- 36. PRICE, W. C., and A. D. WALSH: Proc. Roy. Soc. (London) A179, 201 (1941).
- 37. ORLOFF, M. K., and D. D. FITTS: J. chem. Physics 38, 2334 (1963).
- 38. HARTMANN, H., u. K. JUG: Theoret. chim. Acta (Berl.) 3, 439 (1965).
- 39. PUJOL, L., u. A. JULG: Theoret. chim. Acta (Berl.) 2, 125 (1964).
- 40. ADAM, W., u. A. GRIMISON: Theoret. chim. Acta (Berl.) 7, 342 (1967).

Dr. Martin Jungen

Lehrstuhl für Theoretische Chemie der Universität 3400 Göttingen Bürgerstr. 50 a Deutschland Prof. H. LABHART Physikalisch-Chemisches Institut der Universität 8000 Zürich Rämistr. 76 Schweiz